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Abstract—Robot-assisted arthroscopic surgery has
been increasingly receiving attention in orthopedic surgery.
To build a robot-assisted system, dynamic uncertainties
can be a critical issue that could bring robot performa-
nce inaccuracy or even system instability if cannot be
appropriately compensated. Disturbance observer is a
common tool to be used for disturbance estimation and
compensation by taking all uncertainties as disturbances,
but this will refuse human-robot interaction since the
human-applied force will also be regarded as a disturbance
by the observer. Iterative learning for gravity compensation
can be another promising way to solve this problem when
gravity compensation is the main concern. In this article, a
gravity iterative learning (Git) scheme in Cartesian space
for gravity compensation, integrating with an impedance
controller, is presented. A steady-state scaling strategy is
then proposed, which released the updating requirements
of the learning scheme and also extended its validity to
trajectory-tracking scenarios from set-point regulations.
The deriving process and convergence properties of the
Git scheme are presented and theoretically analyzed,
respectively. A series of simulations and physical experim-
ents are conducted to evaluate the validity of the scaling
strategy, the learning accuracy of the Git scheme, and the
effectiveness of the learning-based impedance controller.
Both simulation and experimental results demonstrate
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good performance and properties of the Git scheme and
the learning-based impedance controller.
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iterative learning, physical human-robot interaction, robot-
assisted arthroscopy.

[. INTRODUCTION

OBOT-ASSISTED minimally invasive surgery (MIS) has

been becoming increasingly popular across various sur-
gical specialties, such as orthopedics [1]. MIS can bring the
benefits of a faster recovery rate and decreased pain to patients
thus getting more favor. Robot-assisted surgeries are trans-
forming traditional orthopedic surgeries by helping surgeons
achieve more successful and precise surgical outcomes with
the assistance of robots [2], [3], [4]. Elbow arthroscopy is a
typical type of MIS in orthopedics that allows the management
of elbow stiffness, arthritis, and fractures in a minimally invasive
fashion [5]. During traditional elbow arthroscopy, the surgeon
needs to hold an arthroscope with one hand while performing the
surgical operations with the other hand, which can restrict the
dexterity of the surgical performance and increase the cognitive
load. This arouses the necessity to develop a robot-assisted
arthroscope holder where the robot can hold the arthroscope
for the surgeon during the surgery.

To build a robot-assisted system for assisting surgeons in
holding with arthroscope during orthopedic surgery, some re-
quirements need to be satisfied [6]. First, The robot can hold
the arthroscope still at a specified pose (i.e., set-point regu-
lation) while rejecting all possible disturbances (e.g., external
disturbances delivered to the arthroscope via contact with the
patient’s body during surgery). Second, when the surgeon needs
to move the arthroscope to a new pose (e.g., for adjusting the
scope view perspective), the robot should allow the surgeon
to move it around freely (i.e., human-robot interaction). Then,
when a new pose is determined by the surgeon, the robot should
keep the arthroscope still again while rejecting any disturbances.
The main problem to build such a robot-assisted system is the
dynamic model uncertainties and external disturbances, which
could largely affect the robot’s task performance accuracy and
even stability if they are not appropriately compensated. More
specifically, incomplete gravity compensation can be the main
issue in this case since heavy surgical tools with unknown
weights will be attached to the robot end-effector (EE).
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Disturbance observer is a promising way to estimate and
compensate for dynamic uncertainties. In our previous work [6],
we have shown that by integrating impedance control and non-
linear disturbance observer (NDOB), an accurate impedance
control can be achieved. In that work, the disturbance observer
can accurately estimate and compensate for the lumped uncer-
tainties including incomplete gravity compensation. However,
the NDOB as well as other types of observers [7], such as
generalized momentum observer (GMO) [8], joint velocity ob-
server [8], extended state observer [9], and disturbance Kalman
filter method [10], [11], always estimate a lumped uncertainty
term and is not able to separate out any one component when
several uncertainty sources exist. Moreover, the observer will
refuse human-robot interaction since human-applied force will
be taken as a part of the lumped disturbances thus being rejected.

Learning control has been developed to track repetitive tra-
jectories for both rigid and nonrigid robots. De Luca and Ulivi
presented a simple and efficient iterative learning algorithm for
robots with joint elasticity [12]. In their work, a learning term
was used to learn the necessary modification to the desired
trajectory position. They demonstrated the algorithm’s useful-
ness by good motion performance of simulations on a two-link
planar robot. Based on a similar design methodology, an iterative
learning scheme for gravity compensation in set-point regulation
problems was initially proposed by De Luca and Panzieri [13],
[14]. The learning scheme completes the required gravity com-
pensation at the final steady state in set-point regulation tasks.
It can iteratively learn the constant gravity without the need of
introducing an integral error term or using high-gain feedback.

Based on the same contraction mapping theorem, Basovich
et al. [15] developed an iterative output feedback controller for a
6-degree-of-freedom (DOF) precision positioning system when
only position measurement is available. Their proposed con-
troller can learn and compensate for the payload uncertainties
with bounded error in set-point control tasks. Ji et al. [16] used
the iterative learning method to autocalibrate gravity compen-
sation when the robot has no contact with the environment, thus
making the robot EE weightless.

Incomplete or absent gravity compensation will cause a con-
stant steady-state error [13]. For impedance control, making the
robot “stiffer” by tuning up the impedance gains can reduce the
error to some extent, but not eliminate it. Especially when heavy
but unknown external payloads are attached to the robot EE, the
method of tuning up impedance gains will be largely limited and
be difficult to achieve satisfying results.

In summary, in our target application scenario, i.e., robot-
assisted arthroscopic surgery, gravity compensation, and phys-
ical human-robot interaction (pHRI) are the main concerns.
There are various disturbance observers available for gravity
compensation [7], e.g., NDOB, GMO, etc. However, the output
of an observer is a lumped estimate on all uncertainties including
gravity, and it will refuse human-robot interaction by taking
it as a part of uncertainties [6]. Furthermore, it also requires
the estimated dynamic parameters of the robot dynamics [7].
An adaptive controller [17], [18] can also deal with dynamic
uncertainties including gravity. However, it is a controller rather
than an independent approach for disturbance estimation, and it
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cannot provide compliant robot behavior for a safe human—robot
interaction like an impedance controller can do. Therefore, a
simple method that can focus on gravity compensation while
enabling pHRI and avoiding the necessity of the robot dynamics
is needed in our scenario.

Inspired by [13], in this article, we proposed a gravity iterative
learning (Git) scheme for gravity compensation in Cartesian
space and integrated it with an impedance controller. The con-
vergence properties of the Git scheme are theoretically analyzed.
The learning performance and effectiveness are then evaluated
by a series of simulations and experiments in both trajectory
tracking tasks and set-point regulation tasks. Finally, an appli-
cation experiment in pHRI scenario is presented to show the
effectiveness of the integrated controller. The main contributions
in this work can be described as the following.

1) Anadapted iterative learning scheme for gravity compen-
sation in Cartesian space is presented, and the converging
properties are theoretically analyzed.

2) A steady-state scaling strategy is proposed, which enables
the iterative learning update law to be executed in each
servo loop, and more importantly, it extends the valid-
ity of the learning scheme to general trajectory-tracking
scenarios.

The rest of this article is organized as follows. Section II is
devoted to introducing the proposed iterative learning scheme
in impedance control. Section III presents simulations, experi-
ments, and corresponding results in various scenarios for eval-
uating the scheme. Finally, Section IV concludes this article.

II. METHODS
A. Robot Dynamics and Disturbances

A general dynamic model for an n-DOF rigid robot with
revolute joints [19] can be given by

M(q) q + S(q7 q) él + G(Q) +Tfric ((31) =T+ Text (1)
SN~ S~—— N~ ~—

N+AM §+4s G+AG JTFoxt
where q, ¢, € R™ are the joint position, velocity, and acceler-
ation, respectively, Ml € R™*™ denotes the inherent inertia ma-
trix, S € R™*™ denotes a matrix of the Coriolis and centrifugal
forces, G € R" represents the gravity vector. 1\7[, g, G represent
users’” model estimates, while AM, AS, AG are the corre-
sponding estimate errors. Tgic € R™ is joint friction, 7 € R”
is the commanded joint torque vector, Text € R” is the torque
caused by external force, Feyxt € RO is the external force in
Cartesian space, and J € R%*" is the Jacobian matrix.

By collecting all the disturbances together, the dynamic model

(1) of a robot can be rewritten as

Mg+S4+G =T+Text — [Tric + (AME + ASq + AG)]

Tdist

@)

where T4ist denotes the lumped uncertainties containing the
model error (AM4 + ASq + AG), the joint friction T gric, and
the external disturbances Text.
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In this article, we will focus on estimating and compensating
for the gravity caused by external constant payloads using an
iterative learning method. In order to clearly reveal the behavior
of the iterative learning algorithm to learn the gravity of the
external payloads, in the simulations, we assume that

a) anideal dynamic model is available, i.e.,l\71 =M, S = S,
G = G, thus, AM = 0, AS = 0, AG = 0;

b) no joint friction, i.e., Tgric = 0;

c¢) only constant payloads exists for external disturbances.
By applying these assumptions, the dynamic model (2)
will become (3)

MG+ Sq+G =7+JTFey . 3)
N—_——
Tdist

Model (3) can be expressed in Cartesian space as
M,k + SxX 4+ Gx = J 77 + Foxy )
where My, S, G« have

M, =J TMJ1
S, =J TSJ1_-M,JJ1 (5)
G, =JTG

where My, Sy, Gx are the M, S, G expressed in Cartesian
space, respectively.

B. Impedance Control

A desired impedance model [6], [20], [21] for robot-
environment interaction can be expressed as

Fimp = Mm(x - )&d)
+(Sx + D) (% —*%q) + Km(x —xa) (6)

where M,,, Dy, K, are user-designed matrices for inertia,
damping, and stiffness, respectively. Note that x4, Xq,Xq are
the desired position, velocity, and acceleration, respectively, in
Cartesian space, while x, %, X are the actual ones. Fin,p, is the
interaction force between the robot and the environment.

To avoid the measurement of external forces, the designed
inertia matrix will be set as the inherent inertia matrix of the
robot, i.e., M, = M. Then, by substituting (6) into (4) with
Fext = Fimp, the impedance control law can be given by [6]

T=MJIY(kq — JI 1%q) + ST %4 + G
+ JT D (%a — %) + Km(xa — x)]. (7)

Note that when implementing the impedance controller (7) in
practice for physical experiments, the estimates 1\7[7 S, G will
be used for the calculation since an accurate model of a physical
robot is usually not available.

For moving robot EE to a fixed point, i.e., set-point regulation,
we have X4 = 0, Xq = 0. Then, the impedance control law (7)
can be simplified and reduced to (8), which is also known as
task-space proportional-derivative (PD) controller with gravity
compensation

7 =JT[Kmn(xq — X) — DX + G. (8)

C. lterative Learning for Gravity Compensation

One straightforward way to reduce the effect of dynamic
uncertainties (including incomplete or absent gravity compen-
sation/cancellation) is to make the robot stiffer by tuning up
the spring gains (K,,) in the impedance model. This could be
feasible in simulations where the gains can be set to be very large,
but not feasible in practice where the robot may have chattering
due to large gains. Especially when heavy external payloads
are involved, solely tuning the impedance gains may not be
able to obtain a satisfactory result. To solve this problem, we
introduce an iterative learning scheme for gravity compensation
in Cartesian space.

Inspired by [13] where iterative learning was integrated with
a PD controller in joint space, a Cartesian-space impedance
control law (at the ¢th iteration, ¢ = 1,2,...) integrating with
a Git scheme for gravity compensation is proposed, which can
be expressed by

i =MJI (kg — JI 1%q) + ST 1xq
+JT D (ka — %) + 7 Km(xa —x)] + JTui_1 (9)

where JTu;_; is an iterative learning term for gravity compen-
sation instead of a gravity term G. For set-point regulation, it
will be reduced to be

Ti = I [VKm(xq — X) — DX 4+ JTu;_4. (10)

The update law for the iterative learning u; can be given by
(11)

where ~ is a positive scalar gain, and setting ug = 0 for ini-
tialization. Also, different from [13] where one iteration was
set as 3 s while in this article it updates itself in each sampling
loop. This ensures the updated values of the iteration term are
changing continuously and smoothly from one iteration to the
next, and also extends its validity to more general tracking
tasks from set-point regulation. Theoretical analysis will be
introduced in detail later.

To avoid a sudden impulse at the moment of the robot starts
up due to a potentially large initial error between the initial
actual position and the initial desired position, a simple linear
interpolating strategy is used, which is given by

u; = YKm(xa — x) + ui_1

Xq =X+ (Xq —X0)& ift<t;

1
).(d:}'{O-l-()'(d—}'(o)ti ift <ty

1
Xq = X0+ (%a —Xo)& ift <t

d o+ (Xa —Xo)¢ <t 12)
Xd = X4 ift >ty

Xq = X4 ift >t

Xq = Xq ift >ty

where xg = constant,xg = 0,Xg = 0 are the initial actual
position, velocity, and acceleration, ¢, is the duration of the
transition period defined by the user (in this article, ¢; = 2 s).
Note that the x4, X4, Xq on the right-hand side of the equations
represent the theoretical values from the predefined trajectory or
setpoint, while those on the left-hand side represent the values
used for calculation in the controller. As shown in (12), the de-
sired position, velocity, and acceleration are set up increasingly
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Forward
Kinematics

X, X

Impedance control with iterative
learning for gravity compensation

Gravity learning
term update
Xq X4 = constant x4 = X"
X4 X3=0 Xq=0
Xq Xq =0

Xq =X
Xq=0
Xq=0

X"t The latest set of

Xg =0

real-time position of x.
Pre-defined || Pre-defined | | Interaction || Interaction Taisturh ¢ External constant
trajectory setpoint disabled enabled payloads.

Fig. 1. Control block diagram of an impedance controller with iterative
learning scheme for gravity compensation. When x4 = x, the position-
dependent terms in the impedance controller and the Git update law
vanish, meaning that the set-point regulation is released and interaction
is enabled, and now the user can move the robot EE around. When
xq = x*, a set-point regulation task is recovered and interaction is
disabled. The latest set of position (x*) ensures seamless switching
between the “interaction enabled” mode and the “interaction disabled”
mode, which can be easily realized by a pedal switch.

from the initial actual ones (X, Xg, Xg) (at t = 0) to the desired
ones (X4, Xd,Xq) (at t = t;) within the very first ¢; seconds. In
other words, (12) ensures errors increase linearly from zeros (at
t = 0) to the actual errors (at ¢ = £;) when the robot starts up.
It should be noted that this smoothing strategy is independent
of the control laws and only valid within the first ¢; seconds.
The block diagram of the proposed iterative learning for gravity
compensation in impedance control is illustrated in Fig. 1.

D. Analysis

In this section, the process of designing the iterative learning
term and the corresponding update law will be presented in
detail. Then, the convergence properties of the iterative learning
scheme will be theoretically analyzed in a scenario of set-point
regulation.

At the steady state (q = constant,q = q = 0) of the ith
iteration in the scenario of set-point regulation, it has

M4 + 84+ G(a) = 7i
Ti = JT[/Km(xq — xX) — Dm%] + JTu; 1.
Combining the two equations in (13) as one equation, yields

G(qi) = JT’YKm(Xd - X) + JTui_l.

13)

(14)

Based on (14), the update law of the iterative learning term
can be designed as

JTu; = JTYyK o (xg — x) + JTuy_. (15)

Simplify (15), we obtain the update law given by (11). By
designing the update law in this way and by comparing (14)
with (15), we are actually assuming that at the steady state, the

learning term converged to the gravity term, i.e.,
G(qi) = JTu;. (16)

The subsequent part will analyze and show proof of the con-
vergence capability of the designed iterative learning scheme.
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The update law (11) can be rewritten as

u; — u; 1 = 7Km(xa — xi). (17

Define the position error in Cartesian space as €; = Xq — X;j,
(17) can be rewritten as

u; —uj1 = YKpe;. (18)

Also, the position error in Cartesian space between two adja-
cent iteration steps can be expressed as

Xj —Xi-1 = Xij—Xd+Xda —Xi-1 = —€+e_1. (19

Knowing that the derivative of gravity is bounded [13] by

9G(q)
1= Y <a
q
where « is a positive constant. Rewrite (20) in the form of finite
difference as

(20)

G(ai) — G(gi-1)
| | <e
qi — di-1
Also, the relationship between Cartesian velocity and joint
velocity is given by

2y

x =Jq. (22)

Assuming that the Jacobian matrix is invertible, i.e., J -1

exists. Rewrite (22) in the form of finite difference as
ai —gio1 =J N (xi — xi1). (23)

From the relationship between gravity term and iterative
learning term at steady state (16), it yields

Jui —wi | = [I7TG(a) — I T G(ai )|

13- TIG(ai) — G(ai1)|

al I llai — ai-1ll by 21)]

al TP (xi = xim1)[| [by (23)]

ININ A

IN

al I-NI(—ei +ei1)| [by (19)]
allI7FI | el + lles-a -

Assuming that the minimum eigenvalue of the user-defined
matrix K,,, meets the condition of Apin(Km) > «, then it can
yield the following inequality property:

IN

(24)

vallei]| < YAmin(Km)lleil| < [[vKme]-
By combining (18), (24), (25), yields

(25)

yalleill < [vKmeill < ol IFI7[(leill + lei-all).

(26)
By simplifying (26), yields
el < 7T (lesll + e ])- @7
Reorganizing (27), yields
Jeill < 2 llei ] e8)

v=B
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where 3 = ||[J~T|||[J-1||. In order for contraction mapping,
requires

g
— < 1. (29)
=8
Due to 5 > 0 is always true, yields
v =28
v > 23T I = 27T (30)

Assuming that the Jacobian matrix J is bounded, then J -T
and J~1 are both bounded. Then, set the following boundness:

b>||I-TI L. (31)

Finally, it can conclude that, on the conditions of (1) Jacobian
matrix is invertible and bounded, and (2) Apin (Km) > «, then,
~ > 2b can ensure the iterative learning term [J Ty;_1 in (10)]
being a contraction mapping, in other words, can ensure the
iterative learning term converges to the true gravity at the steady
state. Note that the convergence condition here is only sufficient,
which means that even if it is violated the iterative learning term
may still converge. This is consistent with the conclusion made
in [13]. Note that this convergence analysis result still holds true
when model uncertainties exist (see Supplementary Material).'

E. Steady-State Scaling Strategy

For the iterative learning-based update law (11), to explicitly
display an learning rate m (by default n = 1), the update law
(11) can be rewritten as

u; = YK (Xa — x) + uj_1. (32)

Itis worth noting that an important assumption has been made
for the contraction mapping is “at steady state,” and the update
law (32) should be executed at steady-state theoretically. This is
consistent with the drawback described in the prior work [12],
[13], [14], where the steady state is set as 3 s in their simulations.
Executing the update law only at steady state (e.g., every 3 s
in [13]) is ok for simple simulations, but in practice, it would be
a significant limitation.

As a further step in this article, analog to the concept of finite
difference, we scale the common “‘steady-state” period (taking
1 s here as an example) down to the level of sampling time
(0.001 s) such that the update law can be executed in each
sampling loop. Since the default learning rate (n = 1) in (32)
is corresponding to the common steady-state period (1 s), it also
needs to be scaled down to be = 0.001 in order to match with
the scaled steady-state period (0.001 s). This enables the easy
implementation of the update law (32) and allows it to be updated
in each sampling loop.

More importantly, the steady-state scaling strategy enables
the iterative learning scheme to be valid also for more general
trajectory-tracking scenarios. Since learning-based impedance
control law (10) (for set-point regulation scenario) is re-
duced from (9) (for the general trajectory-tracking scenario),
impedance control law (9), and iterative learning update law (32)

!Online file: https:/drive.google.com/file/d/ 1TLEKJfsgCqtWBDyvIROXtAm]1
qiD5VwGa/view ?usp=sharing

TABLE |
PARAMETERIZATION FOR SIMULATIONS AND EXPERIMENTS

Parameters Simulations Experiments
Spring Km = 38.441 Km = 7.291
Damper Dy = 12.401 Dy = 5.401
Spring (increased stiffness) NA Km = 200I
Damper (increased stiffness) NA Dm =21
Learning gain ~y 1 1

Learning rate n 1/0.001/0.005/0.025  0.001

Note: I € R3%3 denote identity matrix. NA, not applied. The parameters
are determined via trial and error with a binary search strategy.

can be used for iterative learning on the gravity compensation
in trajectory-tracking scenarios. This strategy will be evaluated
with simulations and experiments in the following section.

IIl. SIMULATIONS, EXPERIMENTS, AND RESULTS
A. Robotic System

A 3-DOF PHANToM Premium 1.5 A robot (3-D Systems,
Inc., Cary, NC, USA) is used for simulations and experiments
in this article. For the simulations, we reconstruct the kinematic
model and dynamic model of the PHANToM robot based on [22]
and conduct the simulations using MATLAB/Simulink (version
R2020a, MathWorks Inc., Natick, MA, USA). For the experi-
ments, the physical robot is controlled via joint torque command,
which is sent from MATLAB/Simulink using Quarc real-time
control software (Quanser Inc., Markham, ON, Canada). The
control rate of the robot is 1000 Hz. The MATLAB/Simulink
and Quarc software run on a computer with a 3.33 GHz Intel(R)
Core(TM) 2 i5 CPU with a Windows 7 Enterprise 64-bit oper-
ating system.

B. Parameterization

For all simulations and experiments in the remaining part
of this article, the parameter values used in the learning-based
impedance controller (9) and the iterative learning update law
(32) are listed in Table I. In order to involve acute changes in
position and velocity, a concaved-square trajectory is selected
for the simulations and experiments, which can be expressed as
a function of time given by

xq = Rcos®(t)
yq = Rsin®(t) + R
Zd = 0

(33)

where R = 0.02 m is a parameter of the concaved-square.
Note that the described trajectory is in a vertical plane in the
workspace of the 3DOF robot.

In the following sections, a series of simulations and ex-
periments are conducted to evaluate the effectiveness of the
proposed iterative learning scheme both in free-motion mode
(i.e., trajectory tracking tasks) and in restricted-motion mode
(i.e., set-point regulation tasks). A demonstration video of the
experiments can be found in the supplementary material.

20nline video: https://drive.google.com/file/d/1-7NaY11clzW_-71do3nk8-
qGMRQ2Lmir/view ?usp=sharing
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Fig. 2. Simulation results of scaling down the iterative update time

(T4, i.e., the steady-state time) while scaling down the iterative learning
rate (n) accordingly. (a) Scaling down T;; from 0.5 s to 0.001 s. (b)
Scaling down T;; from 1 s to 0.001 s. (c) Scaling down T;; from 2 s
to 0.001 s. (d) Scaling down T;; from 3 s to 0.001 s. The reference is
an external payload-1 (25 g). The setpoint is set as [0.01,0.04,0] m in
Cartesian space.

It should be noted that the gravity compensation estimated by
the iterative learning scheme may include two main components,
i.e., gravity term in the dynamic model, and (if applicable) all
constant payloads attached to the robot EE or robot body. In
order to clearly reveal the converging properties and learning
performance of the learning scheme, in the simulations of this
work, we will assume the gravity term is fully known in such a
way the iterative learning term only learns and compensates for
the unknown external payloads.

C. Simulation to Evaluate Steady-State Scaling Strategy

In the original work [13] where the iterative learning scheme
was initially proposed with a PD controller in joint space, a
significant drawback of the scheme is that the iterative update
should be executed at steady state. This is also true for this
work since the same “steady-state” assumption has been used
during the theoretical analysis of the convergence properties.
This drawback can largely limit the learning scheme to be
implemented in practice.

To overcome this drawback, at the end of Section II, we pro-
posed a strategy to scale down the steady-state period [equivalent
to iterative update time for updating the update law (32)] to
the same level as the sampling time in order to improve and
generalize the iterative learning scheme. The steady-state scaling
strategy requires the learning rate (n) to be scaled to the same
level accordingly. In this section, we will evaluate this strategy
with simulations.

In Fig. 2, a comparison of with-scaling and without-scaling
the iterative update time is presented when the robot is in a
set-point regulation task. For the without-scaling (n = 1) sce-
nario, the gravity learning behavior under various conditions
of iterative update time (7;; = 0.5,1,2,3 s) is investigated
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Fig. 3. Simulation results in a set-point regulation task with a pure

impedance controller under an ideal dynamic model. (a) Case #0, no
payloads. (b) Case #1, payload-1 (25 g). (c) Case #2, payload-2 (125 g).
(d) Case #3, payload-3 (250 g). The setpoint is set as [0.01,0.04,0] m in
Cartesian space.

as shown by the green dash-dot lines in the figure. Corre-
spondingly, the blue dot lines represent the gravity learning
behavior in the with-scaling scenario, where the iterative update
time is scaled (7;; = 0.001 s) to be the same as the sam-
pling time while the learning rate n is scaled accordingly (n =
0.002,0.001,0.001/2,0.001/3 s). The comparison between the
green dash-dot lines and the blue dot lines in Fig. 2 revealed
that the steady-state scaling strategy is effective and reason-
ably sound. Especially in Fig. 2(a), the similarity between the
with-scaling scenario and the without-scaling scenario is clearly
revealed.

D. Simulation on Set-Point Regulation Task

Simulations in four cases are conducted in set-point regulation
tasks (restricted-motion mode). Different cases are related to
different external payloads attached to the robot EE, which can
be described as follows.

1) Case #0, reference, no external payloads.
2) Case #1, payload-1 (25 g) attached.

3) Case #2, payload-2 (125 g) attached.

4) Case #3, payload-3 (250 g) attached.

A 3DOF robot is implemented with the iterative learning-
based control law (10) and learning update law (32) as well
as the steady-state scaling strategy, where the iterative learning
scheme is used to iteratively learn and compensate the gravity
of the external payloads in different cases. Fig. 3 shows the
simulation results in a set-point regulation task with a pure
impedance controller (8) [or equivalently controller (10) with
setting the learning rate = 0] under an ideal dynamic model
(i.e., the dynamic model matrices M, S, G are fully known). As
shown in Fig. 3(a) (Case #0), with the ideal dynamic model and
without any external disturbances, the impedance controller can
achieve very good set-point regulation performance. However,
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Fig. 4. Simulation results in a set-point regulation task under different

iterative learning rates for learning gravity compensation. (a) Case #1
with payload-1 (25 g). (b) Gravity learning result in Case #1. (c) Case #2
with payload-2 (125 g). (d) Gravity learning result in Case #2. (e) Case
#3 with payload-3 (250 g). (f) Gravity learning result in Case #3. Note
that the solid lines converging to zero in (b), (d), and (f) are the learning
results along the nongravity axes in Cartesian space and their legends
are ignored for clarity purposes.

in Fig. 3(b) (Case #1), when an external payload-1 (25 g) is
attached to the robot EE, the regulation result made by the same
impedance controller shifted downward due to the incomplete
gravity compensation. Furthermore, as the weight of the external
payload increases, the shifts get worse as shown in Fig. 3(c)
(Case #2) and in Fig. 3(d) (Case #3).

When the iterative learning-based controller (10) and the
update law (32) are implemented, the external payloads can
be accurately compensated via iterative learning thus accurate
regulation performance is recovered. Fig. 4 shows the simulation
results in a set-point regulation task under different iterative
learning rates (7 = 0.001,/0.005/0.025). As shown in Fig. 4(a)
and (b), when an external payload-1 (25 g) is attached to the
robot EE (Case #1), the set-point regulation performance [see
Fig. 4(a)] is recovered to be accurate with the help of iterative
learning on gravity compensation, while different learning rates
(n =0.001/0.005/0.025) may result in different converging
behavior [see Fig. 4(b)]. Specifically, a large learning rate (1)
may result in an oscillate converging behavior while a smaller
learning rate (1) may result in smooth converging behavior.
Similar simulation results can be found when the weight of
the payload increases [Fig. 4(c) and (d) for payload-2 (125 g),
and Fig. 4(e) and (f) for payload-3 (250 g)]. The getting worse
oscillation behavior as the learning rate increases also indicates

0.04
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wvsensenes actual

0.03

Eo0.02
>
0.01
actual start
+ actual end

O desired start
0 O  desiredend AW

-0.02 -0.01 0 0.01  0.02

Fig. 5. Simulation results in a trajectory tracking task with a pure
impedance controller under an ideal dynamic model. (a) Case #0, no
payloads. (b) Case #1, payload-1 (25 g). (c) Case #2, payload-2 (125 g).
(d) Case #3, payload-3 (250 g).

that the learning rate should be matching the iterative update
time, which again verified the reasonability of the proposed
steady-state scaling strategy.

The simulation results in the regulation task demonstrate
that the incomplete gravity compensation will cause the actual
regulated position to shift downward, thus, the task performance
is destroyed. However, with the steady-state scaling strategy and
implementing the iterative learning scheme to learn for gravity
compensation, the regulation accuracy can be recovered.

E. Simulation on Trajectory Tracking Task

By using the steady-state scaling strategy, the steady-state
period can be scaled to be on the same level as the robot
sampling time. By doing this, the iterative learning scheme can
be extended to trajectory-tracking tasks theoretically. This will
be evaluated by simulations in this section.

Similar to the procedures used in the set-point regulation task
presented in the previous section, we repeat all the procedures in
the trajectory tracking task. The trajectory of concaved-square
(33) is employed for the trajectory tracking task. The same
3DOF robot model is employed and the iterative learning-based
impedance controller (9) with the update law (32) is imple-
mented.

The simulation results in the trajectory tracking task are
similar to that in the set-point regulation task. Fig. 5 shows
the simulation results in a trajectory tracking task with a pure
impedance controller (7) (or equivalently controller (9) with
setting the learning rate 17 = 0) under an ideal dynamic model
where the M, S, G are fully known. As shown in Fig. 5(a)
(Case #0), with the ideal dynamic model and without any ex-
ternal payloads attached, the impedance controller can achieve
accurate trajectory tracking performance. However, in Fig. 5(b)
(Case #1), when an external payload-1 (25 g) is attached to
the robot EE, the actual trajectory made by the same impedance
controller shifted downward. Again, as the weight of the external
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Fig. 6. Simulation results in a trajectory tracking task under different
iterative learning rates for learning gravity compensation. (a) Case #1
with payload-1 (25 g). (b) Gravity learning result in Case #1. (c) Case #2
with payload-2 (125 g). (d) Gravity learning result in Case #2. (e) Case
#3 with payload-3 (250 g). (f) Gravity learning result in Case #3. Note
that the solid lines converging to zero in (b), (d), and (f) are the learning
results along the nongravity axes in Cartesian space and their legends
are ignored for clarity purposes.

payload increases, the shifted displacements get larger as shown
in Fig. 5(c) (Case #2) and Fig. 5(d) (Case #3).

When the learning-based impedance controller (9) is im-
plemented with the steady-state scaling strategy, the external
payloads can be compensated via iterative learning thus accurate
tracking performance can be recovered. Fig. 6 shows the sim-
ulated tracking performance under different iterative learning
rates (n = 0.001/0.005/0.025). As shown in Fig. 6(a) and (b),
when an external payload-1 (25 g) is attached to the robot EE
(Case #1), the trajectory tracking performance [see Fig. 6(a)] is
recovered to be accurate with the help of iterative learning on
gravity compensation, while different learning rates may have
different converging behaviors [see Fig. 6(b)], which is affected
by the learning rate 7. Similar to the observed phenomenons in
the set-point regulation task, a larger learning rate may have an
oscillate converging behavior while a smaller learning rate may
have a slow but smooth converging behavior. Similar simulation
results can be found when the weight of the payload increases
[Fig. 6(c) and (d) for payload-2 (125 g), and Fig. 6(e) and (f) for
payload-3 (250 g)].

The simulation results in the trajectory tracking task demon-
strate that, by using the steady-state scaling strategy, the iterative
learning scheme for gravity compensation is also valid when a
robot is in a free-motion mode. With an appropriate setting on
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Fig. 7. Simulation results of comparing the gravity learning behavior

in a trajectory tracking task and in a set-point regulation task under
different iterative learning rates. (a) Gravity learning results in Case
#1 with payload-1 (25 g). (b) Gravity learning results in Case #2 with
payload-2 (125 g). (c) Gravity learning results in Case #3 with payload-3
(250 g).

the learning rate, the iterative learning term is able to converge
to the actual weight of the external payload.

If we take a comparison on the gravity learning behavior in the
trajectory tracking task [see Fig. 6(b), (d), and (f)] with that in the
set-point regulation task [see Fig. 4(b), (d), and (f)], and put them
in a same figure as shown in Fig. 7, we can clearly found that the
gravity learning behavior is very similar and has almost the same
converging process. Especially in Fig. 7(c), the gravity learning
behavior is almost the same in the two scenarios. The results
in Fig. 7 indicate that by using the steady-state scaling strategy,
the iterative learning scheme for gravity compensation can be
used for both set-point regulation tasks and trajectory-tracking
tasks, while their converging process are almost the same. This
verified the feasibility of extending the iterative learning scheme
to scenarios of robots in free motions.

F. Experiment on Trajectory Tracking Task

In contrast to simulations, a series of experiments are con-
ducted to evaluate the presented iterative learning-based con-
troller by using a 3DOF Phantom Premium 1.5 A robot. The
trajectory of concaved-square (33) is employed.

The experimental results of trajectory tracking performance
in different conditions are shown in Fig. 8. Fig. 8(a) shows the
tracking performance when only an impedance controller (7) is
implemented with relatively small impedance gains. Note that
inherent uncertainties of the physical robot system, including
but not limited to dynamic model error and unmodeled friction,
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Fig. 8. Experimental results of a trajectory tracking task in different

scenarios. (a) Impedance controller only. (b) Impedance controller only,
but with increased robot stiffness. (c) Increased robot stiffness with
payload-1 (25 g). (d) Increased robot stiffness with two payload-1 (50 g
in total, both attached since the beginning). (e) Increased robot stiffness
with payload-1 and iterative learning. (f) lterative learning result with
payload-1. (g) Increased robot stiffness with two separate payload-1
(25g+25 g) and iterative learning. (h) lterative learning result with two
separate payload-1. Note, for (g) and (h) where two payload-1 appear,
the first payload-1 is attached since the beginning while the second
payload-1 is attached at around the 6th second.

always exist in all physical experiments. As shown in Fig. 8(a),
the tracking performance is significantly affected due to the
inherent uncertainties.

A straightforward way to overcome the inherent uncertainties
is to make the robot stiffer by tuning the impedance gains. When
increasing the robot stiffness (see Table I for increased stiffness
by tuning impedance gains), the inherent uncertainties can be
overcome thus accurate tracking can be obtained. However,
solely using increased stiffness to overcome the uncertainties
is limited when external payloads are attached to the robot EE,
especially for heavy external payloads. As shown in Fig. 8(c),
when payload-1 (25 g) is attached, although most of its mass can
be overcome by the increased stiffness, there still have significant
shifting-down for the actual trajectory. Especially when two
payload-1 (50 g in total, all attached since the beginning) are
attached, the shift gets larger as shown in Fig. 8(d). The effect
of increasing the stiffness could be very good in simulations in
order to achieve accurate task performance, but it is limited in

Time (s)

(b)

Fig. 9. Experimental results of disturbance estimation by NDOB and
Git in trajectory tracking tasks. Note that only estimation along the y-
axis is displayed for clarity since gravity is along the y-axis in this work.
(a) Without external payloads. (b) With external payload-1 (25 g).

practice since too large stiffness can cause robot chattering and
thus unstable. Therefore, in practice, smaller impedance gains
are used at the cost of task performance accuracy. From Fig. 8(c)
and (d), we can clearly observe that the inaccuracy part is a shift
downward away from the desired trajectory which is mainly
caused by incomplete gravity compensation.

To reduce the effect brought by incomplete gravity compensa-
tion, the iterative learning scheme is employed. By implement-
ing the learning-based impedance controller (9), the effect of
external payload-1 (25 g) can be effectively compensated [see
Fig. 8(e) and (f)]. Furthermore, a second payload-1 (25 g) can
also be effectively compensated [see Fig. 8(g) and (h)]. One can
notice that in Fig. 8(f) and (h), the learning term has bounded
errors and cannot converge to the exact weight of the payloads.
By comparing with the simulation results on trajectory tracking
tasks, we can reasonably conclude that the bounded learning
errors are caused by inherent uncertainties in the physical robotic
system (e.g., inaccurate dynamic model, joint friction, etc.).
In other words, the iterative learning term estimates gravity
plus a part of the other uncertainties. This is verified with a
further experiment where NDOB is employed to estimate the
lumped uncertainties, and the results are shown in Fig. 9. In
the figure, we can see that with an appropriately high learning
rate (n = 0.001 x 10), the Git algorithm can accurately estimate
the lumped uncertainties as the same as the NDOB does. While
with a low learning rate (n = 0.001 x 1), the iterative learning
algorithm can still accurately estimate the gravity part [see
Fig. 9(b)], but only a rough estimation for the other uncertainties
[see Fig. 9(a)]. Note that NDOB is a specific type of observer
among a variety of disturbance observers, and it is selected here
as a reference due to its high accuracy in estimating the lumped
uncertainties and its ability to estimate the nonlinearities in the
dynamics [7].

G. Experiment on Set-Point Regulation Task

By implementing the iterative learning-based controller (10),
experiments on set-point regulation involving pHRI are con-
ducted in two scenarios, i.e., pHRI disabled, and pHRI enabled.
Fig. 10 shows the set-point regulation performance under the
iterative learning-based controller when pHRI is involved. As
shown in Fig. 10(a) and (b), when the pHRI is disabled the
robot will reject human-applied force and keep the robot EE
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Fig. 10. Experimental results in a set-point regulation task involving

pHRI. (a) Trajectory when pHRI disabled. (b) Computed torque when
pHRI disabled. (c) Trajectory when pHRI enabled. (d) Actual position
when pHRI enabled. Note, the five shaded areas in (d) indicate five times
of interaction during which the user moves the robot EE from one point
to another as shown in (c). The five vertical blue lines in (d) are the time
points corresponding to the five actual endpoints in (c).

remain at a fixed position. This realizes one expected condition
in our application, i.e., the robot holds with an arthroscope and
keeps it still while rejecting all potential disturbances. When
pHRI is enabled [see Fig. 10(c) and (d)], the robot EE can be
freely moved by the human user to wherever the user wanted.
This realizes another expected condition in our application, i.e.,
the robot allows the surgeon to freely move it to a new position
for adjusting the arthroscope view when necessary.

A further evaluation is to implement the controller in an appli-
cation scenario mimicking robot-assisted arthroscopic surgery
with a fundamentals of arthroscopic surgery training (FAST)
simulator as shown in Fig. 11(a). In the application scenario,
the robot EE is expected to hold with an arthroscope still while
rejecting all potential disturbances. And when necessary, the
arthroscope can be freely moved to a new position for adjusting
the scope view. The experimental results of this application
scenario are shown in Fig. 11(b). The two shaded gray areas in
Fig. 11(b) represent two periods of holding the arthroscope still
by the robot with different scope views. And during these two
periods, we can see that the robot EE position is accurately kept
constant, which verified the effectiveness of the implemented
iterative learning-based controller.

H. Comparing With Other Methods

The presented Git scheme in this work extended the validity
of the prior work [13] into both trajectory tracking tasks and set-
point regulation tasks. The simulation and experimental results
demonstrate the good performance of the Git scheme in learning
and compensating for gravity. The disturbance observers like
NDOB can accurately estimate the lumped uncertainties includ-
ing gravity, but it is not suitable for pHRI scenarios since it will
prevent human-robot interaction [6], [7]. An adaptive controller
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Fig. 11. Robot-assisted arthroscopy with a FAST simulator. Gray ar-
eas represent two periods of holding the arthroscope still by the robot
with different scope views. (a) Setup scenario. (b) Torque and position.

TABLE Il
COMPARING WITH METHODS IN LITERATURE

Methods Uncertainties ~ Applicability ~ Requirements

Git Gravity (ON®) x,%xq,J7T

Git [13] Gravity [©) q,9d

NDOB [7] All O, ® qM™ 1 8G
Adapt [17], [18]  Dynamics @D,® q,4,94d,9d, 44, Y

Note: (D Setpoint regulation tasks; ) Trajectory tracking tasks;
subscript ¢ means “desired”’; Y is the regressor matrix in a
linearized dynamic model which is derived via sophisticated
process based on the general dynamic model, which means that
M, S, G are implicitly required in order to obtain Y.

can also compensate for dynamic uncertainties including grav-
ity [17], [18], but it is a controller rather than an independent
strategy of disturbance estimation. Moreover, as a controller,
it cannot provide compliant robot behavior like an impedance
controller can do. The main differences among these methods
are summarized in Table II.

In future work, we will further investigate the similarities and
differences in the performance of simulations and experiments
by comparing with the methods in the literature, e.g., NDOB,
adaptive controller, and conventional PID controller. Also, we
will use the full impedance model without simplifications, which
will enable the inertia term to be tunable.

[V. CONCLUSION

In this article, we presented a simple and compact Git scheme
for gravity compensation in Cartesian space. The whole process
of developing the Git scheme is presented in detail, including
motivation, theoretical analysis, simulations, experiments, and
application. First, the convergence properties are theoretically
analyzed. Then, a steady-state scaling strategy is proposed to
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improve the Git scheme, which also extends its validity to more
general trajectory tracking scenarios. By integrating the Git
scheme with an impedance controller, an iterative learning-based
impedance controller is constructed, where the Git algorithm can
accurately learn for gravity compensation while the impedance
controller can provide a robot with compliant behavior, thus
ensuring a safe human-robot interaction in pHRI scenario. The
learning accuracy of the Git scheme together with the scaling
strategy are verified by simulations on both set-point regula-
tion tasks and trajectory tracking tasks. The effectiveness of
the learning-based controller is further validated by physical
experiments on both trajectory tracking tasks and set-point
regulation tasks. An application experiment in a simplified sce-
nario of robot-assisted arthroscopic surgery also evaluated the
effectiveness of the implemented learning-based controller. The
results demonstrated that the integrated controller can achieve
good tracking performance and regulation accuracy when heavy
external payloads are attached to the robot EE. Moreover, it
allows seamless switching between set-point regulation and
human-robot interaction.
The major benefits of the presented Git scheme for gravity
compensation can include the following:
1) simple and compact formulation and no need for the robot
dynamics;
2) no need for any information about external payloads;
3) no need for higher impedance gains for reducing the
effects of incomplete gravity compensation;
4) itis valid for both set-point regulation tasks and trajectory
tracking tasks.
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