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Abstract—Physical movement therapy is a crucial method of
rehabilitation aimed at reinstating mobility among patients facing
motor dysfunction due to neurological conditions or accidents.
Such therapy is usually featured as patient-specific, repetitive,
and labor-intensive. The conventional method, where therapists
collaborate with patients to conduct repetitive physical training,
proves strenuous due to these characteristics. The concept of
robot-assisted rehabilitation, assisting therapists with robotic
systems, has gained substantial popularity. However, building
such systems presents challenges, such as diverse task demands,
uncertainties in dynamic models, and safety issues. To address
these concerns, in this paper, we proposed a bilateral teleopera-
tion system for rehabilitation. The control scheme of the system
is designed as an integrated framework of impedance control
and disturbance observer where the former can ensure compliant
human-robot interaction without the need for force sensors while
the latter can compensate for dynamic uncertainties when only
a roughly identified dynamic model is available. Furthermore,
the scheme allows free switching between tracking tasks and
physical human-robot interaction (pHRI). The presented system
can execute a wide array of pre-defined trajectories with varying
patterns, adaptable to diverse needs. Moreover, the system can
capture therapists’ demonstrations, replaying them as many
times as necessary. The effectiveness of the teleoperation system
is experimentally evaluated and demonstrated.

Index Terms—Teleoperation, robot-assisted rehabilitation,
movement therapy, impedance control, disturbance observer.

I. INTRODUCTION

Paralysis is a side effect of stroke that requires physical
therapy for rehabilitation, without which the stroke survivor
may lose motor control on some body parts in the long term.
Patients with paralysis suffer from an inability to move some
body parts, reduced mobility, restricted range of motion, and
muscle stiffness [1]. During conventional physical therapy,
the therapist needs to help the patient to move the affected
body part, e.g., arm, repetitively to regain mobility [1]. This
repetitive movement therapy training is labor-intensive and
strenuous for the therapist but necessary for the patient.
Beyond stroke, patients with motor dysfunction due to other
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conditions (e.g., cerebral palsy, Parkinson’s disease) or injuries
on body parts (e.g., fall, car accident), may also need physical
therapy which largely increases its demand. Robot-assisted
rehabilitation is a promising solution where a robot can be
deployed to assist the therapist in helping the patient perform
movement therapy practices repetitively with a certain degree
of accuracy [1], [2].

There is an abundance of work that has been done for robot-
assisted rehabilitation over the past three decades while many
of them involved only one robot manipulator [3]–[6]. Some
new techniques can be integrated into the system to enhance its
capability. For example, Ocampo and Tavakoli built a visual-
haptic colocation system for robot-assisted rehabilitation ex-
ercises by involving a 2D augmented reality (AR) display [2].
By providing spatial AR visual feedback together with haptic
feedback, the system enabled better task performance in terms
of task completion time.

Learning from demonstration (LfD) is a popular option for
the robot to learn and help with repetitive rehabilitative and
assistive practices. Najafi et al. proposed a framework using
a potential field function with a velocity field controller to
learn and produce the therapist’s assistance in robot-assisted
rehabilitation where the therapist just needs to demonstrate
once [1]. The potential field function is used to model and
reproduce the therapist’s motion and assistive force, while the
velocity field controller is designed to compensate for and
regulate the patient’s deviation.

In recent years, teleoperation systems have gained increas-
ing interest due to the additional advantages of allowing in-
home environment therapy and avoiding physical contact for
better hygienic conditions. Sharifi et al. proposed an approach
for therapist-patient collaboration in a telerobotic system with
time delays [7]. The approach refers to a bilateral impedance
control strategy that can filter out the patient’s involuntary
hand tremor. Their telerobotic system allows the patients to
move their limbs on the master robot side while being assisted
as much as needed by the online assistive force provided
by the therapist on the second robot side. Later, Sharifi
et al. employed a similar strategy for assist-as-needed tele-
rehabilitation [6]. With this strategy, the system can minimize
the therapist’s movements while providing a better perception
to the therapist about the patient’s issues and recovery status in
motor control ability. As an additional benefit of the strategy,
the patient can receive assistance from two sources, i.e., the
adjustable impedance model, and the exerted force by the
therapist.
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Safety and compliance are the paramount concerns when
developing a robotic system for rehabilitation, either for col-
laboration or teleoperation. Impedance control is a commonly
adopted control scheme considering that it can provide com-
pliant robot behavior thus ensuring safety. Impedance control
has its intrinsic property of compliance which makes it more
suitable for human-robot interaction [8], [9]. A robot with an
impedance controller can be programmed to be soft (com-
pliant) or rigid (non-compliant) as necessary, which ensures
a safe human-robot interaction [10]. Moreover, the measure-
ment of the interaction force is not needed for impedance
control. In brief, the sensor-free and compliance properties
make impedance control a popular choice for human-robot
interaction scenarios. Another common problem in building
such a robotic system is that the dynamics of the robot might
be unknown or only a roughly identified dynamic model be
available. An integrated framework of combining impedance
control with disturbance observer has been proposed in our
previous work [9]. By involving a disturbance observer to
compensate for the modeling error and other uncertainties,
an accurate impedance control can be achieved even with an
inaccurate dynamic model.

Due to the diverse motor inabilities among the patients,
each individual patient requires individualized physical therapy
for rehabilitation. Even for the same patient, different therapy
programs are also required at different rehabilitation phases.
For example, a patient may not be able to move the limb at
all at the very beginning, which means that passive movement
is needed with the help of the therapist. Gradually, the patient
can voluntarily move the limb in a small area, and in this
phase, assist-as-needed rehabilitation may be a better option
[6]. When the patient is able to move the limb around relatively
freely, more complicated moving trajectories or tasks can be
designed for the patient to further enhance the rehabilitation.

To better meet these requirements, a bilateral teleoperation
system is proposed for robot-assisted rehabilitation in this
paper, which integrates several features, including pre-defined
trajectory tracking, LfD, and force feedback, into the same
teleoperation system under the same control architecture. The
designed control architecture, a main contribution of this
work, enables free switching between pre-defined trajectory
tracking mode and physical human-robot interaction (pHRI)
mode. With the control architecture, the proposed teleoperation
system has the following detailed features,

(1) Force feedback is provided on the master robot (therapist)
side. With this feature, the therapist can better understand
the status of the patient on the second robot side.

(2) A large variety of pre-defined trajectories with different
patterns can be programmed thus the therapist can select
the ones that are most suitable to individual patients.

(3) The therapist on the master robot side can design cus-
tomized trajectories for individual patients as needed.

(4) Similar to the concept of LfD, the customized trajectory
demonstrated by the therapist can be recorded, and then it
can be replayed by the system on its own as many times
as needed without losing reproduction fidelity.

The remainder of this paper is organized as follows: Section

II is devoted to introducing the general methods including dy-
namics, impedance control, and disturbance observer. Section
III presents the details of the proposed teleoperation system,
including the master/second robot kinematics, dynamics, and
force feedback rendering. Section IV presents experiments and
corresponding results for evaluating the system. Section VI
gives the concluding remarks.

II. METHODS

A. Robot Dynamics and Impedance Control

A general dynamic model for an n-degree-of-freedom
(DOF) rigid robot [11] can be given by

M(q)︸ ︷︷ ︸
M̂+∆M

q̈+ S(q, q̇)︸ ︷︷ ︸
Ŝ+∆S

q̇+ g(q)︸︷︷︸
ĝ+∆g

+τ fric(q̇) = τ+ τ ext︸︷︷︸
JTFext

(1)

where q, q̇, q̈ are the actual joint angle, velocity, and ac-
celeration, respectively, M ∈ Rn×n denotes the inherent
inertia matrix, S ∈ Rn×n denotes a matrix of the Coriolis
and centrifugal forces, g ∈ Rn represents the gravity vector.
M̂, Ŝ, ĝ represent their estimates, while ∆M, ∆S, ∆g are the
corresponding estimated errors. τ fric ∈ Rn is joint friction,
τ ∈ Rn is the commanded joint torque vector, τ ext ∈ Rn

is the torque caused by the external force, Fext ∈ R6 is the
external force in Cartesian space.

A desired impedance model [8]–[10] for robot-environment
interaction can be expressed as

Fimp = Mimp(ẍ− ẍd)

+(Sx +Dimp)(ẋ− ẋd) +Kimp(x− xd)
(2)

where Mimp,Dimp,Kimp are user-designed matrices for in-
ertia, damping, and stiffness, respectively. Note that xd, ẋd, ẍd

are the desired position, velocity, and acceleration, respectively
in Cartesian space, while x, ẋ, ẍ are the actual ones. Sx is the
Coriolis and centrifugal matrix of the robot in Cartesian space
and Sx = J−TSJ−1 −MxJ̇J

−1, where Mx = J−TMJ−1

is the inherent inertia of the robot in Cartesian space [12].
To avoid the measurement of external forces [9], the de-

signed inertia matrix can be set as the inherent inertia matrix of
the robot, i.e., Mimp = Mx. Then, to reach (2) as the closed-
loop dynamics governing the robot-environment interaction in
an ideal scenario of no model errors and no joint friction,
setting with Fimp = Fext, the impedance control law can be
given by

τ = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd + g

+JT[Dimp(ẋd − ẋ) +Kimp(xd − x)]
(3)

Note that when implementing the impedance controller
(3) in practice, the estimates M̂, Ŝ, ĝ will be used for the
calculation since an accurate model of a physical robot is
usually not available.

For robot end-effector (EE) moving to a fix point, i.e., set-
point regulation, it has ẍd = 0, ẋd = 0. Then, the impedance
control law (3) can be simplified to (4), which is also known as
task-space proportional–derivative (PD) controller with gravity
compensation.

τ = JT[Kimp(xd − x)−Dimpẋ] + g (4)
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Based on (4), when the fixed point is set to be time-varying
points of the real-time Cartesian position, i.e., xd = x, it can
be further reduced to be

τ = −JTDimpẋ+ g (5)

in which mode, physical human-robot interaction (pHRI) is
enabled, and the user can move the robot EE freely in its
workspace. Note that in this pHRI mode, it is possible to
involve force feedback if needed, then the controller with force
feedback will be given by

τ = −JTDimpẋ+ g + τff (6)

where the τff is the rendered force feedback which will be
introduced in detail later. It is worth mentioning that for
a backdrivable haptic device, it is defaulted in pHRI mode
without needing a controller like (5), and the operator feels the
intrinsic inertia of the robot mechanism. In other words, only
the force feedback term τff in (6) is needed for a haptic device
if force feedback rendering is needed, while the damper term
is applicable but not necessary. If the operator implements the
whole controller (6) on a haptic device for pHRI with force
feedback rendering, the operator will feel an extra damper
force (due to the damper term) in addition to the intrinsic
inertia from the robot mechanism, but the damper force is
usually small since robot EE held by the operator is usually
in a low-speed movement. The advantage of the controller (6)
is that it is a general form for robotic control thus applicable to
all robotic systems other than haptic devices. Furthermore, it
can realize a seamless transition from trajectory-tracking tasks
to pHRI due to the fact that (5) (pHRI mode) is automatically
reduced from (3) (trajectory-tracking mode) under some pHRI-
specific conditions.

For the teleoperation system proposed in this paper, as
illustrated in Fig.1, both the master robot and the second robot
are implemented with an impedance controller based on (3)
which are expressed as

τM,imp

= M̂J−1(ẍM,d − J̇J−1ẋM,d) + ŜJ−1ẋM,d + ĝM + τff

+JT[DM,imp(ẋM,d − ẋM) +KM,imp(xM,d − xM)]

τS,imp

= M̂J−1(ẍS,d − J̇J−1ẋS,d) + ŜJ−1ẋS,d + ĝS

+JT[DS,imp(ẋS,d − ẋS) +KS,imp(xS,d − xS)]
(7)

where the subscript M and S stand for “Master” and “Second”,
respectively, and subscript imp stands for “impedance”, and
subscript d stands for “desired”. It should be noted that the
force feedback τff is only set for the master robot in pHRI
mode.

B. Force Feedback and Rendering

The proposed teleoperation system, as shown in Fig.1, is set
as bilateral, which means that force feedback is rendered and
delivered to the operator on the master robot side when the
second robot interacts with the surrounding environment. In
this work, a virtual spring force will be rendered as the force
feedback based on position error between the two robots. To

this end, the real-time position of the second robot is sent
back to the master robot via user datagram protocol (UDP)
for force rendering. The position error between the master
robot EE and the second robot EE is calculated for generating
a virtual spring force which can be expressed as

τff = JTFff = JTKff (xS − xM) (8)

where (xS − xM) is the position error between the master
robot EE and the second robot EE, and Kff is the virtual
spring stiffness coefficient which can be tuned to make the
virtual spring stiffer or softer.

C. Disturbance and Disturbance Observer

By collecting all the disturbances together, the dynamic
model (1) of a robot without considering force feedback
(τff = 0) can be re-written as

M̂q̈+ Ŝq̇+ ĝ = τ+ τ ext − [τ fric + (∆Mq̈+∆Sq̇+∆g)]︸ ︷︷ ︸
τdisturb

(9)
where τdisturb denotes the lumped uncertainties that usu-
ally include three main aspects, i.e., the model error
(∆Mq̈+∆Sq̇+∆g), the joint friction τ fric, and the ex-
ternal disturbances τ ext, where the last aspect may involve
constant disturbance and/or time-varying disturbance. The
constant disturbance may be a constant payload attached to
the robot end-effector (EE) or body, while time-varying dis-
turbance may be robot-environment interaction forces such as
human-applied forces during human-robot interaction. A dis-
turbance observer usually estimates the lumped uncertainties
τdisturb [13], but cannot discriminate any single component
when more than one component exists.

The main uncertainties of the teleoperation system (in free
motion mode) constructed in this paper will include the model
error and the inaccurate joint friction which will be estimated
and compensated for by using a disturbance observer. A
variety of observers are available for use [14]–[17], such as
generalized momentum observer (GMO) [17], extended state
observer (ESO) [18], nonlinear disturbance observer (NDOB)
[13], and disturbance Kalman filter (DKF) method [19], [20].

In this paper, a nonlinear disturbance observer (NDOB)
is employed considering that the NDOB has the advantage
of estimating the nonlinearities in the dynamics. An adapted
NDOB design based on [13] can be expressed as

Lobs = YobsM
−1
obs

p = Yobsq̇

ż = −Lobsz+ Lobs(Ŝq̇+ ĝ − τ − p)

τ NDOB = z+ p

(10)

where Lobs ∈ Rn×n is the observer gain matrix, Yobs ∈
Rn×n is a constant invertible matrix needs to be designed,
Mobs is designed to be a symmetric and positive definite
matrix in practice and thus invertible, z is an auxiliary variable,
p is an auxiliary vector determined from Yobs, τ NDOB is the
estimated lumped uncertainties via the NDOB observer. For
the full designing procedures of this NDOB and complete
theoretical analysis, refer to [13].
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Fig. 1: Block diagram of control schemes for the proposed teleoperation system. The dashed line means a linked switch. The
output of NDOB τM,NDOB and τS,NDOB are the estimation of the lumped uncertainties τM,disturb and τS,disturb, respectively.

A teleoperation system integrating impedance control with
NDOB is proposed for robot-assisted rehabilitation. The block
diagram of the proposed teleoperation system is illustrated in
Fig.1.

III. ROBOTIC SYSTEMS FOR TELEOPERATION

The experimental setup is shown in Fig. 2. A 2-DOF
planar upper-limb rehabilitation robot 1.0 (in black color,
Quanser Inc., Markham, ON, Canada), and a 2-DOF planar
upper-limb rehabilitation robot 2.0 (in white color, Quanser
Inc., Markham, ON, Canada) are used for constructing the
teleoperation system. The Rehab robot 1.0 (black) is used as
the master robot while the Rehab robot 2.0 (white) is used as
the second robot. To build virtual models of the two robots,
the kinematic model and dynamic model of the two robots are
reconstructed based on [21]–[23]. It should be noted that the
Rehab robot 2.0 (white) is an upgraded version of the Rehab
robot 1.0 (black), so they have the same form of kinemat-
ics and dynamics (with different values for the parameters).
All the experiments are conducted using MATLAB/Simulink
(version R2017a, MathWorks Inc., Natick, MA, USA) with
Quarc real-time control software (Quanser Inc., Markham,
ON, Canada), which is running on two computers with a 3.33
GHz Intel(R) Core(TM) 2 i5 CPU and a Windows 7 Enterprise
64-bit operating system. The control rate of the robots is 1, 000
Hz, while the sampling rate for acquiring data is set as 500
Hz. The bilateral communications between the two robots are
realized by UDP at a rate of 1, 000 Hz.

A. Robot Kinematics

A thorough exploration of the kinematics and dynamics of
the 2-DOF rehabilitation robot 1.0 (black) can be found in
[22], [23]. Additionally, a Denavit–Hartenberg (DH) table for
this robot is provided in Table I. The corresponding frame
definitions are illustrated in Fig. 2. Note that the DH table
and frame definitions are derived based on the Rehab robot
1.0 (black), but they are also applied to the Rehab robot 2.0
(white).

𝑦3

𝑦2
𝑥2

𝑂2

𝑥3

𝑂3

𝑦0,1

𝑥0,1

𝑂0,1

𝑞1
𝑞2

𝐿2

𝐿1

Initial position

Fig. 2: Schematic of the 2-DOF planar upper-limb rehabilita-
tion robot (black, white) and frame attachment to each joint.
Frame {0} is the base frame while frame {3} is the end-
effector (EE) frame. L1, L2 are link lengths. q1, q2 are joint
angle variables.

TABLE I: Denavit–Hartenberg (DH) parameters for the 2-
DOF Quanser Rehab robot 1.0 (black) and Rehab robot 2.0
(white) kinematic chain (for the homogeneous transform in
the modified convention).

no. Joint a(m) α(rad) d(m) θ(rad)

1 Joint 1 0 0 0 q1
2 Joint 2 L1 0 0 −π

2
− q1 + q2

3 Joint 3 (EE) L2 0 0 0
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According to the DH parameters in Table I and the frames
determined in Fig. 2, the homogeneous transformation matrix
T from EE frame {3} to base frame {0} can be obtained as

T =


sin(q2), cos(q2), 0, L1 cos(q1) + L2 sin(q2)

− cos(q2), sin(q2), 0, L1 sin(q1)− L2 cos(q2)
0, 0, 1, 0
0, 0, 0, 1


(11)

where q1, q2 are joint angles, L1, L2 are link lengths.
The Jacobian matrix J can be expressed [22], [23] by

J =

[
−L1 sin(q1), L2 cos(q2)
L1 cos(q1), L2 sin(q2)

]
(12)

where q1, q2 are joint angles, L1, L2 are link lengths.
Based on the transformation matrix (11), the forward kine-

matics [22], [23] can be written as{
x = L1 cos(q1) + L2 sin(q2)

y = L1 sin(q1)− L2 cos(q2)
(13)

For the Rehab robot 1.0 (black), the link lengths are L1 =
0.254 m, L2 = 0.2667 m. The joint limits restricted by the
mechanical structure [22] are

−55◦ ≤ q1 ≤ 90◦

0◦ ≤ q2 ≤ 145◦

35◦ ≤ q1 − q2 + 90◦ ≤ 145◦
(14)

For the Rehab robot 2.0 (white), the link lengths are L1 =
0.340 m, L2 = 0.375 m. The joint limits restricted by the
mechanical structure are

−86◦ ≤ q1 ≤ 132◦

−49◦ ≤ q2 ≤ 154◦

35◦ ≤ q1 − q2 + 90◦ ≤ 145◦
(15)

The inverse kinematics is obtained [22] asq1 = acos(
x2+y2+L2

1−L2
2

2L1

√
x2+y2

) + atan2(y, x)

q2 = q1 + acos(
L2

1+L2
2−x2−y2

2L1L2
)− 90◦

(16)

The workspace of the master robot and the second robot
are illustrated in Fig. 3. Note that the workspace of the master
robot (the red color area) is shifted +0.1 m along the x-axis
for a better overlap with the workspace of the second robot.

B. Robot Identified-Dynamics

According to [22], the identified inertia matrix for the Rehab
robot 1.0 (black) is given by

M̂ =

[
α1, − 1

2α2 sin(q1 − q2)
− 1

2α2 sin(q1 − q2), α3

]
(17)

where α1=0.06929, α2=0.04217, α3=0.04416 are experimen-
tally identified dynamic coefficients in the inertia matrix.

The identified Coriolis and centrifugal forces related matrix
for the Rehab robot 1.0 (black) [22] is given by

Ŝ =

[
0, 1

2α2 cos(q1 − q2)q̇2
1
2α2 cos(q1 − q2)q̇1, 0

]
(18)

where α2=0.04217 is experimentally identified.

-0.4 -0.2 0 0.2 0.4 0.6
x (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y 
(m

)

Master robot
Second robot
initial EE position of Master
initial EE position of Second

Fig. 3: Workspace of the master robot and the second robot.

TABLE II: Parameterization for experiments with the teleop-
eration system for robot-assisted rehabilitation.

Parameters Master Robot Second Robot Location

Link length [0.254, 0.2667] [0.340, 0.375] Eqn.(11,12,13,16)
Spring Kimp = 30I Kimp = 20I Eqn.(7)
Damping Dimp = 2

√
30I Dimp = 2

√
20I Eqn.(7)

Inertia matrix Mobs = M̂ Mobs = 0.001I Eqn.(10)
Observer gain Yobs = 1.92I Yobs = 0.048I Eqn.(10)

Note: I ∈ R2×2 denote identity matrix.

As the Rehab robot 1.0 (black) is a planar robot and its
links move in the horizontal plane, the gravity-related vector
[22] is simply given by

Ĝ =

[
0
0

]
The identified joint friction model for the Rehab robot 1.0

(black) [22] is given by

τ̂ fric =

[
α4q̇1
α5q̇2

]
(19)

where α4=0.06510, α5=0.07389 are experimentally identified.
For the Rehab robot 2.0 (white), the same set of the

identified dynamics model presented above is employed. Al-
though the actual identified dynamic parameters of the Rehab
robot 2.0 (white) would be quite different from the black
one, it is possible to use the same dynamic model since
a disturbance observer is employed to compensate for the
dynamic uncertainties.

C. Parameterization

For all experiments in the remaining part of this paper, the
parameter values used in the impedance model and NDOB are
listed in Table II. Note that the parameter values are tuned by
trial and error with the strategy of binary search. A video1

demonstration of the experiments is available online.
In robot-assisted rehabilitation, a trajectory, either pre-

defined by mathematical equations or customized by the

1Online video link: https://youtu.be/Jokv RPOXEc
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therapist, is needed to help patients move their injured limbs
around for rehabilitation and recovery [1], [6], [7]. Several pre-
defined trajectories are employed for evaluating the teleoper-
ation system performance while trajectory tracking accuracy
will be used to evaluate the system performance. Note that
in order to present the results more intuitively, the tracking
accuracy in experimental results is presented as trajectory plots
by overlapping the desired and the actual trajectories into one
figure instead of trajectory tracking error plots. A circular and
cyclic trajectory can be expressed as a function of time as the
following {

xd = R sin( 2πt1 t)

yd = R cos( 2πt1 t)
(20)

where R = 0.08 m is the radius of the circle and t1 = 5 s is
the period for generating a full cycle.

A figure-eight trajectory can be expressed as{
xd = R sin( 2πt1 t) cos(

2π
t1
t)

yd = R sin( 2πt1 t)
(21)

where R = 0.1 m is the amplitude of the figure-eight
trajectory, t1 = 5 s is the period for generating a full cycle.

A tetragon trajectory (also known as beetle curve) can be
expressed as a function of time given by{

xd = R cos3(t)

yd = R sin3(t)
(22)

where R = 0.1 m is a parameter of the tetragon trajectory.
A pentagram trajectory (also known as hypotrochoid) can

be expressed as a function of time given by{
xd = (R− r) cos(nt) + d cos(R−r

r nt)

yd = (R− r) sin(nt)− d sin(R−r
r nt)

(23)

where R = 0.08, r = 0.048, d = 0.064, and n = 3, are
parameters of the pentagram trajectory, and R, r, d control
the size of the trajectory, and n controls the period time for a
full cycle.

A rose curve trajectory (also known as rhodonea curve) can
be expressed as a function of time given by{

xd = R cos(kt) cos(t)

yd = R cos(kt) sin(t)
(24)

where R = 0.1, k = 4, are parameters of the rose curve
trajectory, and R controls the size of pattern, and k controls
the number of petals of the pattern.

IV. EXPERIMENTS AND RESULTS

A. Exp.1: Individual Robot Performance

In Exp.1, we evaluated the performance of each robot by
implementing the impedance controller (3) with and without
the nonlinear disturbance observer (NDOB) (10). In this
experiment, a circular trajectory (20) is employed.

The experiment results are shown in Fig. 4. In the figure, we
can see that the robots cannot perform the trajectory tracking
task accurately without NDOB (Fig. 4a, 4c), while accurate
tracking performance is obtained (Fig. 4b, 4d) when NDOB is
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(c) Second robot without NDOB
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Fig. 4: Exp.1 results of individual performance of the two
robots by implementing impedance controller with or without
NDOB.

implemented. The reason for failed-tracking (in Fig. 4a, 4c) is
due to the inaccurate dynamic model and joint friction model
of the robot. This is especially true for the second robot (white)
since the identified dynamic model and friction model were
specially for the master robot (black). With implementing an
NDOB observer, the dynamic uncertainties can be accurately
estimated and compensated for in both robots.

Exp.1 indicates that by implementing both the impedance
controller and NDOB, the robots can accurately perform
trajectory-tracking tasks separately. Even with a borrowed
dynamic model, which can be viewed as a roughly estimated
dynamic model for the second robot (white), the robot can
track accurately by involving a disturbance observer.

B. Exp.2: Trajectory Tracking

In Exp.2, a set of pre-defined trajectories with patterns
varying from simple to complex are employed to evaluate the
tracking performance of the teleoperation system, including a
circle (20), a figure-eight trajectory (21), a tetragon trajectory
(22), a pentagram trajectory (23), and a rose curve trajectory
(24). Both the master and the second robots are implemented
with an impedance controller and NDOB observer. The master
robot is set to track the pre-defined trajectories, while the
second robot is set to track the EE position of the master
robot. The teleoperation control in Exp.2 is unilateral, i.e., no
force feedback on the master robot side, since force feedback
is not necessary for the master robot in this experiment.

Fig. 5 shows the tracking performance of the teleoperation
system. As can be seen in the figure, the teleoperation system
can accurately perform the trajectory tracking tasks from a
simple pattern to a complex pattern (Fig. 5a, 5c, 5e, 5g, 5i).
Although the tracking accuracy of the complex rose trajectory
pattern (Fig. 5i) is not as good as the simple ones (Fig. 5a,
5c, 5e, 5g), it can be further improved by fine-tuning the
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impedance gains and observer gains. From the figure, we
can also notice that the actual torques for the two robots
are not on the same level, and the second robot needs larger
torques (maximum around 0.5 Nm) than the master robot
(maximum around 0.2 Nm) for tracking the same trajectory.
This is reasonable since they are not identical robots, although
they have the same form of kinematics. This also reflects that
the NDOB can accurately estimate the dynamic uncertainties
for the second robot (white) although it employs an identified
dynamic mode that is not actually for it.

The results of Exp.2 indicate that the teleoperation system
can accurately perform trajectory tracking tasks with varying
pre-defined patterns by implementing an impedance controller
and NDOB observer. The master robot (black) can accu-
rately follow the pre-defined trajectory while the second robot
(white) can accurately follow the master robot.

C. Exp.3: pHRI

In actual robot-assisted rehabilitation scenarios, pre-defined
trajectories might not be always suitable for patients due to
their various rehabilitation requirements. Then, the trajectory
needs to be customized for individual patients by the therapist
which can more effectively help the patient to recovery. In
Exp.3, physical human-robot interaction (pHRI) is involved
for the master robot where the therapist moves the master
robot EE manually in order to customize trajectories while
the second robot follows the trajectory of the master EE.

In this experiment, for the master robot, only an impedance
controller is implemented since an NDOB observer will pre-
vent human-robot interaction [9]. The configuration of the
second robot remains unchanged, i.e., both impedance con-
troller and NDOB are implemented. The teleoperation control
in Exp.3 is bilateral, i.e., the master robot will provide force
feedback to its operator when the second robot is in contact
with the surrounding environment. Even though, in Exp.3, the
operator of the master robot will not receive force feedback
since there is no interaction between the second robot and the
surrounding environment.

Fig. 6 shows the experimental results when the master robot
is operated manually by the operator in the pHRI mode while
the second robot follows the trajectory of the master robot
EE. The results show that the operator of the master robot can
customize the trajectory for the master robot, while the second
robot can accurately follow the master robot.

D. Exp.4: Force Feedback

In Exp.3, pHRI mode, the operator of the master robot
does not receive rendered force feedback due to the fact that
the second robot is in free motion and has no interaction
with the surrounding environment. In Exp.4, force feedback
will be evaluated when the second robot is in contact with
external objects. Two scenarios are designed. In scenario 1, the
second robot will be in contact with an external stiff wall while
the master robot will render force feedback accordingly and
provide it to its operator. In scenario 2, the second robot EE is
attached to an external object (1130 grams) and drags it around
mimicking a rehabilitation scenario of the patient’s limb being
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(e) Tetragon trajectory (#3)

0 5 10 15 20
Time (s)

-1

-0.5

0

0.5

1

T
or

qu
e 

(N
m

)

(f) Torque of trajectory #3

0.2 0.3 0.4 0.5 0.6
x (m)

-0.4

-0.3

-0.2

-0.1

0

y 
(m

)

master desired
master actual
second actual
desired start
desired end
master start
master end
second start
second end

(g) Pentagram trajectory (#4)
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Fig. 5: Exp.2 results of the teleoperation system performance
on trajectory tracking tasks. The master robot tracks a pre-
defined trajectory while the second robot follows the master
robot.
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Fig. 6: Exp.3 results when the master robot is in pHRI mode.
The trajectory of the master robot is defined by the operator
while the second robot follows the master robot.

attached to the second robot EE and passively moving around
for rehabilitation training.

The experimental results of Exp.4 are shown in Fig. 7,
where the yellow-colored area represents scenario 1, and the
purple-colored area represents scenario 2. In scenario 1 of the
yellow-colored area, the operator remotely controls the second
robot to probe a stiff wall by operating the master robot while
the contact force between the second robot and the stiff wall
is rendered by the master robot and delivered to its operator.
As can be seen in Fig. 7b, the rendered force feedback is in
the range of [−7, 7] N. In scenario 2 of the purple-colored
area, the operator remotely controls the second robot to drag
the patient’s upper limb (represented by an external object of
1130 g), while the operator receives force feedback which is in
the range of [−3, 3] N. Note that in this work, we only consider
scenarios where the patients move their limbs passively, thus
we represent the patient’s limb by an external object.

The Exp.4 results show that the feedback force can be
appropriately rendered according to the position error between
the master robot EE and the second robot EE, and then
delivered to the operator of the master robot. The feedback
force here can be rendered to be stiffer or softer by tuning the
corresponding gain.

E. Exp.5: Record-Replay

In conventional rehabilitation, the therapist often needs to
help the patient move the limb repetitively along a customized
trajectory, which is time-consuming and strenuous. This can
be easily and effectively done by the proposed teleoperation
system. The therapist can demonstrate a customized trajectory
only once which can be recorded by the robot, then the robot
can repeat the trajectory as many times as needed on its own.

In previous Exp.3, the customized trajectory demonstrated
by the operator is recorded. Here in Exp.5, we let the master
robot replay the recorded trajectory on its own. The experiment
results are shown in Fig. 8. As can be seen in the figure,
the teleoperation system can accurately replay the recorded
trajectory by comparing it with its original demonstration
(Fig. 6). Note that the actual torque (Fig. 8b) is a bit noisy
than that in the original demonstration (Fig. 6b). This is
reasonable since the recorded velocity and acceleration are
discontinuous numerical values. As long as the sampling
frequency of the recorded trajectory is sufficiently high, e.g.,
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Fig. 7: Exp.4 results of force feedback rendering on the
master robot side when the second robot interacts with external
objects. The yellow-colored area represents scenario 1, and the
purple-colored area represents scenario 2.
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Fig. 8: Exp.5 results of replaying the recorded trajectory data
from Exp.3. The master robot replays the recorded trajectory
while the second robot follows the master robot.

1000 Hz in this experiment, the noise in the actual torque can
be largely minimized and has no adverse effect on the system
performance.

V. DISCUSSIONS

In this paper, we propose a teleoperation system for robot-
assisted rehabilitation training where patients can passively
move their upper limbs with the help of a robot. The control
scheme integrated and enabled three main features in one
teleoperation system. First, the proposed system allows the
therapist to program pre-defined trajectories with various pat-
terns using their mathematical expressions (trajectory-tracking
mode), thus helping the patient conduct movement therapy
training repetitively. Second, the proposed system allows the
therapist to operate the master robot (pHRI mode), then the
second robot on the patient side will follow the master robot
accurately. In such a way, the therapist can directly help the
patient to conduct the movement therapy training remotely.
Third, the system can record the customized movement of the
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therapist in pHRI mode, then replay it repetitively on its own
in trajectory-tracking mode to help the patient do the training.

In the proposed teleoperation system, the master robot (on
the therapist side) is implemented with both an impedance
controller and a disturbance observer in trajectory-tracking
mode, while with only an impedance controller in pHRI mode.
The second robot (on the patient side) is implemented with
both an impedance controller and a disturbance observer in
both trajectory-tracking mode and pHRI mode since it is
designed to always follow the master robot. For the master
robot in pHRI mode, the disturbance observer needs to be
turned off since it will prevent human-robot interaction [9].

For the master robot in pHRI mode, force feedback is
rendered and delivered to the operator (the therapist) when the
second robot is in contact with the surrounding environment.
This allows the therapist to track the real-time status of the
patient via the force feedback. The force feedback is rendered
based on the position error between the master robot EE and
the second robot EE rather than the actual interaction force.
The advantage is that, by appropriate gain-tuning, the rendered
force can be tuned to be stiffer or softer, and it is independent
of the controller.

In [24], Tavakoli et al. summarized typical teleoperation
architectures with force feedback including two-channel (2CH)
and 4CH control architectures. The 2CH position-error-based
(PEB, also called position-position) architecture is a symmetric
design where the master robot takes the real-time position of
the second robot as its desired position, and vice versa. This
2CH PEB architecture does not need a force sensor while force
feedback that is proportional to the position difference will be
rendered automatically on both sides due to the symmetric de-
sign. However, this design suffers from a distorted perception
even when the robot is in free motion due to the non-perfect
position tracking (i.e., non-zero position errors), which means
that the operator of the master robot will receive proportional
force feedback even when the second robot is not in contact
with the surrounding environment. Another 2CH architecture
is direct force reflection (DFR, also called force-position). This
architecture requires a force sensor to measure the interaction
force between the second robot and the environment, then only
the measured force (not including the position anymore) is
sent back to the master robot for generating force feedback.
Although the 2CH DFR is proven to be better than the 2CH
PEB in terms of force feedback transparency, the operator can
still feel the intrinsic inertia of the master robot when the
second robot is not in contact with any objects. The 4CH
architecture is able to achieve ideal transparency by installing
force sensors on both sides to measure the interaction forces.
Both the measured force and the real-time position will be sent
to the other robot for generating force feedback and position
tracking. However, installing force sensors makes the system
complex, and usually unnecessary. When measuring the in-
teraction force is not needed on the master (or second) robot
side, the corresponding force sensor can be removed, thus a
4CH architecture can be reduced to a 3CH architecture without
imposing additional expense on the system transparency. This
makes the 3CH architecture extremely attractive. Furthermore,
all these 2CH/3CH/4CH architectures are designed for pHRI

scenarios and they cannot be directly used for pre-defined
trajectory tracking tasks.

In contrast to the 2CH/3CH/4CH architectures introduced in
[24], in this work, accurate force feedback (high transparency)
is not necessary for rehabilitation. Therefore, force sensors
are not needed. Instead, only the position error is used for
generating a virtual spring force as the feedback on the master
robot side, and by proper gain-tuning, the rendered force
can be close to the actual interaction force. The proposed
architecture is similar to the 2CH PEB architecture, i.e., both
robot real-time positions will be sent to the other robot. But
in our designed architecture, the master robot will only use
the position of the second robot for force rendering. This also
makes the force rendering be independent of the controller
design.

One advantage of the proposed architecture is that the
teleoperation system can seamlessly switch from trajectory-
tracking mode to pHRI mode while the architectures in [24]
are devotedly focusing on pHRI mode. Another advantage
is that the proposed control scheme is applicable to all
general robotic systems rather than only haptic devices. On
the contrary, a potential disadvantage is that the damper term
in the controller (6) in pHRI mode may not be necessary for
a backdrivable haptic device. For a haptic device, with the
damper term, the operator will feel an additional damper force
generated by this term, while without the damper term, the
operator only feels the intrinsic inertia of the robot mechanism.
If this is the case, the user can simply remove the damper term
when using a haptic device.

A potential limitation of this work is that we are only
considering the scenarios where the patients move their upper
limbs passively. In future work, we will extend the current
work to other scenarios where the patients can move their
limbs actively to some extent, and then a robot can help the
patients do the rehabilitation training cooperatively.

VI. CONCLUSIONS

In this paper, a bilateral teleoperation system is constructed
for robot-assisted rehabilitation. The teleoperation system is
implemented with a combination of impedance controller and
disturbance observer where the former can provide compliant
robot behavior for ensuring safe robot-human interaction while
the latter can compensate for dynamic uncertainties when
only a rough dynamic model is available. More importantly,
the designed control architecture integrated both trajectory-
tracking mode and pHRI mode, and allows them to be
switched from one mode to another freely. The proposed
teleoperation system demonstrated accurate trajectory tracking
performance of both the master and second robot, as well as
appropriate force feedback on the master robot side. Moreover,
the teleoperation system allows the therapist to demonstrate a
customized trajectory only once, and then the system, on its
own, can accurately replay the recorded trajectory as many
times as needed.

The proposed teleoperation system is promising to be used
for robot-assisted rehabilitation. It can reduce the workload of
the therapist and retain the quality of the work of helping the
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patient move along a pre-defined or customized trajectory for
rehabilitation training.
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